On Fokker–Planck Equations for Turbulent Reacting Flows. Part 2. Filter Density Function for Large Eddy Simulation
نویسنده
چکیده
The application of large eddy simulation (LES) to turbulent reacting flow calculations is faced with several closure problems. Suitable parametrizations for filtered reaction rates for instance are hardly available in general. A way to overcome these problems is investigated here. This is done by extending LES equations for filtered velocities and scalars (mass fractions of species and temperature) to equations that involve subgrid scale (SGS) fluctuations. Such equations are called filter density function (FDF) methods because they determine the FDF, which is essentially the probability density function of SGS variables. The FDF model considered involves only three parameters: C0 that controls the generation of velocity fluctuations and two parameters which determine the relaxation of velocity and scalar fluctuations. The consideration of this model may be seen as the analysis of a limiting case: the implications of the most simple equations for the dynamics of SGS fluctuations are investigated in this way. These equations were proved recently by various simulations. Here, the FDF model is used analytically to improve simpler methods. Existing models for the SGS stress tensor in velocity LES equations and the diffusion coefficient in scalar FDF equations are generalized in this way. The advantages of these models compared to existing ones are pointed out. These investigations provide further evidence for the suitability of the FDF model considered and they provide its parameters. A theoretical value C0 = 19/12 is derived, which agrees very well with the results of direct numerical simulation. This estimate implies the same value for the universal Kolmogorov constant of the energy spectrum, which is consistent with the results of many measurements. The other two model parameters can be obtained then by dynamic procedures. Therefore, the closure problems of LES equations are overcome in this way such that adjustable parameters are not involved.
منابع مشابه
Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملLarge Eddy Simulation of a Turbulent Reacting Compressible Jet
We report results of a Large Eddy Simulation (LES) effort of turbulent compressible nonpremixed reactive jets. It is well known that there are several difficulties associated with compressible reactive flows in comparison with incompressible flows. In incompressible flows, the energy and mass conservation (for constant density flows) equations are decoupled from the velocity field. Moreover, th...
متن کاملLES of non-premixed turbulent reacting flows with Conditional Source term Estimation
1. Motivation and objectives In the foreseeable future, Direct Numerical Simulation (DNS), a technique in which all flow scales are resolved, will remain computationally unaffordable for turbulent reacting flows at technically relevant high Reynolds numbers Thus, Large Eddy Simulation (LES), which resolves only the large scale motion of the flow while modeling the contribution of the small (sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003